48 [9.20].-Sol Weintraub, Computer Program for Compact Prime List, Microfiche supplement, this issue.

This FORTRAN program computes primes beginning at N and lists them in compact form as shown in [1].

The user enters the number N, where N ranges from zero to a limit set by the user's computer. For 32 -bit machines the maximum N is $\sim 2^{30}$, or approximately 1.1 billion. N should be a multiple of 50000 .

The program calculates primes for 20 intervals of 50000 , i.e., an interval of 10^{6}, and lists the primes in compact form at the rate of an interval of 50000 per page.

The primes are generated by a modified sieve. The number N is divided by odd numbers j and the remainders r_{j} are noted. The composite numbers are then the numbers of the form $N-r_{j}+k_{j}$, where $k=1,2,3, \ldots$ The entire run takes a few seconds of computer time.

Sol Weintraub
Mathematics Department
Queens College (C. U. N. Y.)
Flushing, New York 11367

1. S. WEINTRAUB, "A compact prime listing," Math. Comp., v. 28, 1974, pp. 855-857.

49 [4.00].-Ralph A. Willoughby, Editor, Stiff Differential Systems, Plenum Press, New York, 1974, x +323 pp., 25 cm . Price $\$ 25.00$.

This proceedings of an International Symposium on Stiff Differential Systems held in October, 1973, consists of nineteen papers on theoretical and practical aspects of stiff methods and their applications. In addition to a unified bibliography with dates from 1885 to 1973 , there is an extremely valuable subject index which refers not only to the symposium papers but also to the bibliography.

Stability is the principal subject of four of the papers. Tests for A-stability and for stiff stability of composite multistep methods are given by Bickart and Rubin. Van Veldhuisen uses new concepts of consistency and stability to analyse global errors when the step size is large. Gear, Tu and Watanabe give sufficient conditions for changing both order and step size without affecting the stability of Adams methods. Also, Brayton shows that an A-stable multistep formula together with "passive" interpolation yields stable difference equations for certain difference-differential systems.

Five papers deal with new methods. Enright presents his stiffly stable second derivative methods and two modifications directed at large systems. Liniger and Gagnebin give an explicit construction for a ($2 k-2$)-parameter family of second order A-stable methods. The implicit midpoint method with smoothing and extrapolation is the basis for Lindberg's stiff system solver, and Dahlquist's paper provides the theoretical foundation for this approach. Two unconventional classes of methods are introduced by Lambert: a linear multistep method with variable matrix coefficients and an explicit nonlinear method based on local rational extrapolation.

Other program packages besides those of Enright and Lindberg are described. The special package by Edsberg for simulating chemical reaction kinetics automatically constructs an o.d.e. system from given reaction equations, generates subroutines for both the derivative and the Jacobian and uses Lindberg's solver. Gourlay and Watson indicate some of the practical difficulties they encountered while adding a version of Gear's stiff solver to the IBM "Continuous System Modeling Program", and Hull discusses validation and comparison of stiff program packages.

Stiff systems obtained by semidiscretization of parabolic partial differential equations are treated in two papers. Chang, Hindmarsh and Madsen study the simulation of

COM PUTER PROGRAM FOR COM PACT PRIME LIST
by
SOL WEINTRAUB

```
C
CALLIMG ROUTINE
C
INTEGER CSUM
DIMENSION L(26000),LP(5600)
DIMENSION MS(47)
```

```
C THE DATA IN THE ARRAV MS ARE THE CUMR. COUNTS
```

C THE DATA IN THE ARRAV MS ARE THE CUMR. COUNTS
C. OF PRIMES IN STEPS OF I MILLION TC 46 MILN.
C. OF PRIMES IN STEPS OF I MILLION TC 46 MILN.
DATA MS/0,78498,148933,216816,283146,348513,412849,47
DATA MS/0,78498,148933,216816,283146,348513,412849,47
539777,602489,664579,726517,788060,849252,910077,97
539777,602489,664579,726517,788060,849252,910077,97
1031130,1091314,1151367,1211050,1270607,1329943,13
1031130,1091314,1151367,1211050,1270607,1329943,13
1448221,1507122,1565927,1624527,1683065,1741430,179
1448221,1507122,1565927,1624527,1683065,1741430,179
1915979,1973815,2031667,2089379,2146775,
1915979,1973815,2031667,2089379,2146775,
2204262, 2261623,2318966,2376402,2433654,2490756,25
2204262, 2261623,2318966,2376402,2433654,2490756,25
1 2604535,2661384,2718160.2775053/
1 2604535,2661384,2718160.2775053/
PRINT }9
PRINT }9
MLN =1000000
MLN =1000000
NEXT LINE SETS INITIAL N (STARTING VALUF)
NEXT LINE SETS INITIAL N (STARTING VALUF)
N=0
N=0
M =50000
M =50000
C
C
C
C
NEXT 3 LINES INITIALIZE CORRECT CUMULATIVE
NEXT 3 LINES INITIALIZE CORRECT CUMULATIVE
SUM IF N IS AN EVEN MILLION N.LE.4A MILLION
SUM IF N IS AN EVEN MILLION N.LE.4A MILLION
JS = N/MLN *1
JS = N/MLN *1
IF (JS .GT. 46) CSUM = 0
IF (JS .GT. 46) CSUM = 0
IF(JS.LE.46) CSUM = MS(JS)
IF(JS.LE.46) CSUM = MS(JS)
C
C
DO 40 JN = 1.20
DO 40 JN = 1.20
CALL SIEVE (L,LP,N,M,K)
CALL SIEVE (L,LP,N,M,K)
IF A LIST OF THE PRIMES IS OESIRED IBESIDES
IF A LIST OF THE PRIMES IS OESIRED IBESIDES
THE COMPACT LISTI TAKE C OUT OF NEXT LINE
THE COMPACT LISTI TAKE C OUT OF NEXT LINE
C
C
C
C
PRINT 96, (LP(K3), K3= 1,K)
PRINT 96, (LP(K3), K3= 1,K)
K1 =K + 1
K1 =K + 1
0045 J = K1,5600
0045 J = K1,5600
LP(J) =LP(J-1) * 220
LP(J) =LP(J-1) * 220
CALL O(LP,N,M,CSUM)
CALL O(LP,N,M,CSUM)
40 N = N + 50000
40 N = N + 50000
C
C
96 FORMAT (1X,12111)
96 FORMAT (1X,12111)
98 FORMAT (1H1)
98 FORMAT (1H1)
CALL EXIT
CALL EXIT
END

```
END
```

```
C
    SUBROUTINE SIEVE (L,LP,N,M,K)
C
C
C
C
C
    INTEGER O,R,RR,S
    DIMENSION L(1),LP(1)
    LM=(M+1)/2
        IF (N.EO.O) GO TO 500
        X=N+M
    NF = SORT(X)
C
        OO 5 I = 1, LM
C
C
        O=N/3
    R=N-3*0
    O=R/2
    RR=R-2*0
        K=(4-R* 3*RR)/2
        IF (K .GT. LM) GO TO 10
    L(K)=0
    K=K* 3.
        GO TO }
    10 J = 5
C
    THIS SUBROUTINE USES A MODIFIFD ERATOSTHENES
        SIEVE TO FINO THE PRIMES FROM N TO N&M.
        L IS WORKING STORAGE AND SHOULD SLIGHTLY
        EXCEED M/2. THE OUTPUT VARIABLE K IS THE
        NUMBER OF PRIMES IN THE INTERVAL. THF PRIMES
        ARE STORED IN THE ARRAY LP.
        L \| I \| = I * I - I ~ \& N
        S = 1
    11 0 = N/J
        R=N-J*O
        O=R/2
        RR=R-2*0
        K=(J*1-R*J*RR)/2
    16 IF (K .GT. LM) GOTO 18
        L(K) = 0
        K=K*J
        GO TO 16
        J=J*3-S
        S = -S
        IFI J.LE.NFI GOTO 11
C
        K=0
        00 22 1 = 1. LM
        IF(LII) .EO. O) GO TO 22
        K=K*1
        LP(K)=L(I)
CONTINUE
```

C
$K=0$
$00221=1 . L M$
IFILII) EO. O) GO TO 22
$K=K+1$
$L P(K)=L(I)$
22 CONTINUE
C
C
RETURN
500 CONTINUE
$X=M$
NF $=$ SORT(X)
C
100 (II) $=1+1-1$
$1=1$
$1=1+1$
IF (I -LE. (M) GO TO 100
C
150
$J=1$
$J=J+2$
IF(J .GT. NF) GO TO 350
$K=(J * J+11 / 2$
200 IF (K .GT. (M) GO 10150
$L(K)=0$
$K=K+J$
GO 10200
C
$350 \quad K=1$
$L P(1)=2$
$1=2$
410 CONTIMUE
IF(LII) .EQ. O) GO TO 400
$K=K+1$
$L P(K)=L(I)$
400 I = 1 +1
IF 1 I LLE. LM) GO TO 410 RETUN
END

SUBROUTIME O(L,LI,LU, CSUM)

```
                THIS SUBROUTINE TAKES AN ARRAY L OF PRIMES AND LISTS THEM IN COMPACT FORM. THE LOWER LIMIT,LI,IS THE NEAREST THOUSAND BELOW THE FIRST PRIME. LU IS THE LENGTH OF THF INTERVAL I.E. THE LISTING IS FROM LI TO LI LU. CSUM IS AN INPUT VARIABLE AND EOUALS THE NUMBER OF PRIMES LESS THAN LI.
```

DIMENSION L(1), N(100), NH(100), M(16),N4(9), MN(16), SUMC (10),M2(27)
INTEGER P,SUMC, PSUM,CSUM,H
DIMENSION LKC(26), H(FOO)
DATA MN/ $0000,1000,0300,0070,0009,1300,1070,1009,0370,0309,0079$,
1 1370,1309,1079,0379,13791
DATA LP/PP•/
OATA LO/'O•/
DATA NSP/" •/ DATA
1 MZ/ 0,1,1,1,1,2,2,2,2,2,2,3,3,3,3,4/

C
$1 \mathrm{X}=0$
00873 JCC $=1.100$
MH(JCC) $=0$
$H(J C C)=0$
CONTINUE
c
$K 23=1$
IF(LII).NE. 21 GO TO 200
L(1) $=1$
$L(3)=7$
$L(4)=9$
$K 23=2$
CONTINUE
KM10 $=0$
C
$001111=1.9$
$111 \mathrm{MH}(1)=0$
C
$0031=1,10$
$J H=10 *(1-1)$
DO $3 J=1,10$
NH $(J H+J)=L K C(J)$
C
C
DO $21=1,100$
N(I) $=N S P$
C

```
C
    2
C
    10 PRINT 90, (LC,LC \(=100,900,100)\)
        PSUA \(=0\)
        IFIIX .NE. OI GO TO 11
        PRINT 910,NH
        GO TO 20
        PRINT 91 .IX,NH
    20 J = J + 1
    \(21 \quad P=L(J)\)
        IFI P .GT. L3) GO TO 30
        \(I=P-13+10\)
        PSUM \(=\) PSUM +1
        \(\mathrm{MG}(1)=1\)
        GO TO 20
C
    \(30 \quad L 3=L 3 * 10\)
        \(L W=1000 * N 4(1) * 100 * N 4(3) * 10 * N 4(7) * N 4(9)\)
        \(001 \quad I=1.9\)
        \(\mathrm{NH}(1)=0\)
        \(0035 \mathrm{KW}=1,16\)
        IF ( MN(KW) -EO. LW) GO TO 40
    35 CONTINUF
    \(40 \quad N(N K)=M(K W)\)
        \(H(N K)=M Z(K W)\)
        NK \(=\) NK 1
        IFI NK -LF. NPL) GO TCI 21
        \(L 3 M=L 3-10\) *NPL \(\quad-10\)
        NK \(=1\)
C
        NTH \(=0\)
        \(K C=0\)
        DO 60 IL \(=1,100,10\)
        \(K C=K C+1\)
        \(J T=I L * 9\)
        SUMC(KC) \(=0\)
        DO 50 JL \(=I L\), JT
    \(50 \operatorname{SUMC}(K C)=\operatorname{SUMC}(K C) * H(J L)\)
        NTH \(=\) NTH \(~+\) SUMC (KC)
        NKC = SUMC (KC)
        SUAC(KC) \(=\) LKC (NKC \(\rightarrow 1\) )
    60 CONTINUE
C
```

```
N1 = N(1)
```

N1 = N(1)
IF(N1 .EO. LP .AND. N(2) .EO. LP) N(1)= LO
IF(N1 .EO. LP .AND. N(2) .EO. LP) N(1)= LO
L3P =L3M/1000

```
L3P =L3M/1000
```

C
N1 = N(1)
IFI N1 •EQ. LP .AND. N(Z) .EO. LPI NIII = LO
$L 3 P=L 3 \mathrm{M} / 1000$
IF(L3P.GE. 1000000) L3P $=$ L3P-1000000
PRINT 92, L3P,N,SUMC -NTH
$N(1)=N 1$
KM10 $=$ KM10 $\rightarrow 1$
IFIKM1O -LE. 91 GO TO 65
KH10 $=0$
PRINT 92
65 CONTIMUE
C
C
IFIL3 -GE. L2) GO TO 100
LINE = LINE - 1
IFILINE LLE. 50) GN TO 21
$J=J-1$
LINE $=1$
CSUM $=$ CSUM $*$ PSUM
IF (K23.FO.1) PRINT 93. PSUM,CSUM
IF (K23.EO.2) PRINT 930.PSUM,CSUM
PRINT 94
GO TO 10
100 CONTIMUE
CSUM $=$ CSUM \leqslant PSUM
PRINT 92
PRINT 93. PSUM,CSUM
PRINT 94
C
IF K K23 .EO. 11 RETURN
L(1) $=2$
$L(3)=5$
L(4) $=7$
RETURN
C
90 FORMAT $11 H 1,14 X, 9111,7 x_{0}{ }^{\circ}$ COUNTS BY'I
91 FORMAT(1X, $\left.\cdot\left(10 * *{ }^{\circ}, 12,\right)^{\prime}\right)^{\circ}$
1 1x, 10(1x,10A1), 2x, ${ }^{\circ}$ HUNDREOS Mo/)
910 FORMAT(5x, $2 x, 10\left(1 x_{0}, 10 A 1\right), 2 x_{0} \cdot$ HUNDREDS mo/s
92 FORMAT $17,10(1 X, 10 A 1), 1 X, 10 A 1,14)$
93 FORMAT $8 X, \quad 0=0 \quad A=1 \quad B=3 \quad C=7 \quad D=9 \quad E=13 \quad F=17 \quad G=19 \quad H=37 \quad I=39 \quad J=79$ $1 \mathrm{~K}=137 \mathrm{~L}=139 \mathrm{M}=179 \mathrm{~N}=379 \mathrm{P}=1379^{\circ}, 16 \mathrm{X},{ }^{\circ}$ COUNT ${ }^{\circ}, 16,3 \mathrm{X},{ }^{\circ} \mathrm{CUML} .{ }^{\circ}, 171$
930 FORMAT $8 X, \quad 0=0 \quad A=1 \quad B=3 \quad C=7 \quad D=9 \quad E=13 \quad F=17 \quad G=19 \quad H=37 \quad I=39 \quad J=79$
$1 K=137 L=139 M=179 N=379 P=1379 Q=2357^{\circ}$

94 FORMATI $21 X$, OKEY FOR HUNDREDS... $A=10 \quad B=11 \quad C=12 \quad D=13 \quad E=14 \quad F=15 \quad G=$ $116 \mathrm{H}=17 \mathrm{I}=18 \mathrm{~J}=19 \mathrm{~K}=20 \mathrm{~L}=21 \mathrm{P}=25^{\circ}$)
END

